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ABSTRACT

We introduce a mathematical model for

lossy, multiconductor transmission lines that

makes possible the use of the Pad6 approx-

imation via the Lanczos (PVL) process to

the analysis of complex linear networks that

contain multiple transmission line systems.

Results from numerical experiments are pre-

sented to demonstrate the validity and discuss

the efficiency of the proposed model.

INTRODUCTION

With the rapid growth in size, density and

complexity of modern integrated circuits, the

use of classical circuit simulators becomes in-

efficient or even impossible. The alternative

to such simulators is the development of ap-

proximate reduced order models which cap-

ture, with accept able engineering accuracy,

the important attributes of the response of

the circuit over the bandwidth of interest to

the specific analysis or design. For this pur-

pose moment-matching techniques (1] have

been applied to a variety of electrical CAD

problems. Despite their spectacular success,
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moment-matching techniques are. hindered by

some numerical limitations [2] [3].

Recently, a new method was introduced

for the computation of the Pad4 approxima-

tion of a lumped linear RLC circuit via the

Lanczos process [3]. This algorithm, which

is called PVL (Pad6 via Lanczos), produces

more accurate ancl higher-order approxima-

tions compared to asymptotic waveform eval-

uation (AWE) and its derivatives. Despite

its superior performance to moment-mat thing

techniques, applications of PVL have so far

been limited to lumped RLC circuits. The ob-

jective of this papelr is to present ii method for

modeling circuits with Iossy multiconductor

transmission lines using the PVL algorithm.

Transmission LINES

The general approach to include the multicon-

ductor transmission line systems into a circuit

simulator is to treat them as linear multiports

described by a suitable relationship between

terminal voltages and currents which is ob-

t ained rigorously from the Telegrapher’s equa-

tions.

tion in

For instance, the following formula-

Laplace domain is generally employed
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to integrate transmission lines into moment-

matching type simulations

A(s) Vt(s) + B(s) It(s) = O (1)

where Vt (s) and It(s) are column vectors

cent aining, respectively, the terminal voltages

and currents of the multiconductor line sys-

tem. The matrices A(s) and B(s) are de-

scribed in terms of the per-unit-length line

parameters and are usually exponential type

functions of s.

However, in order to be able to use the

PVL technique to analyze circuits containing

transmission lines, the elements of the matri-

ces A(s) and B(s) in (3) need to be first-

degree polynomials in s. For this purpose,

we introduce a new mathematical model for

lossy multiconductor transmission lines. The

mathematical model is based on the use of

Chebyshev polynomial expansions for the ap-

proximation of the spatial variation of the

transmission-line voltages and currents. The

choice of Chebyshev polynomials is motivated

by the exponential rate of convergence of

Chebyshev expansions [4]. This suggests that

highly accurate approximations of the voltage

and current distributions along the lines can

be effected with a small number of polynomi-

als (M). The choice of Al will be discussed

later.

In brief, the method used the development

of the new model is as follows: First, the

transmission-line voltages and currents are re-

placed by their Chebyshev expansions in the

Telegrapher’s equations. Then a simple col-

location procedure is used to obtain a matrix

representation of the transmission line equa-

tions with matrix coefficients that are first-

degree polynomials ins, and in which terminal

transmission-line voltages and currents appear

explicitly

(AR + sA’)Vt(s) + (BR + SB1)

It(s)

i(s) = o (2)

In (2) AR, Af, BR, and B1 are functions of

line parameters, and V and I, respectively,

contain the volt ages and currents at the collo-

cation points except the near and far ends.

We enter (2) as a stamp into the overall

circuit matrix. Therefore, it is important to

keep the order of Chebyshev approximation as

small as possible in order not to increase the

size of the overall circuit matrix very much.

The accuracy of the approximation, on the

other hand, depends on the order of approx-

imation. Using the exponential convergence

rate property of the Chebyshev expansions, an

opt imum value for Alj the number of colloca-

tion points, for a transmission line of length 1

can be chosen as,

1
.M=4—

A
+2, (3)

tin

where ~tin is the wavelength at the predeter-

mined maximum frequency.

CIRCUIT FORMULATION

Consider a linear circuit Af which contains

linear lumped components and multiconduc-

tor transmission line systems. The time-

domain modified nodal admittance (MNA)

matrix equations for the circuit JV with an

impulse excitation as input can be written as

where VN(I) is a vector of size NN containing

the waveforms of the node voltages, voltage

source and inductor currents; bN6(t) is a vec-

tor representing the excitations; GM and CN
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are constant matrices; P~ is a NN x 2nk selec-

tor matrix whose entries are 1 or O, that maps

ik(f), the terminal currents of the kth line sys-

tem, into the node space of the circuit N; ~ is

the number of transmission-line systems and

nk is the number of conductors in the kth line

system.

The transmission lines are described in the

frequency domain by (2). Combining the

formulations for all transmission lines with

the Laplace transform of (4), one obtains the

frequency-domain MNA matrix for the circuit

N

(~+ s~)X = b (5)

Let ~(s) be the output of interest,

H(S) = d~X(s). (6)

Then, using (5), the output frequency re-

sponse is given by

H(S) = d~(~ + s~)-lb (7)

The PVL algorithm, now, can be applied to

(7) to find the Pad6 approximation of the fre-

quency response via Lanczos process,

(8)

where q is the order of approximation, and

pi and iii are, respectively, the poles and the

corresponding residues. The PVL algorithm

can be found in [3].

EXAMPLES

The first example deals with the intercon-

nection circuit shown in Fig. 1. This exam-

ple has been widely used in the experimental

validation of moment-matching techniques [2].

We applied the PVL algorithm to this cir-

cuit and the 35th order PVL approximation
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Figure 1: The interconnect circuit,
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Figure 2: The output frequency response of

the interconnect circuit.

is compared with the exact response for VOU~

in Fig. 2. The two responses are indistin-

guishable. The sanne circuit was ik) analyzed

using the multipoi nt moment-matching tech-

nique [5]. To find the response from dc to

5 GHz, four expansions were needed for the

moment mat thing case, which means that the

matrix had to be factored 4 times (1 real, 3

complex). On the other hand, using PVL the

same response is extracted from only one real

(but larger) matrix factorization. Moreover,

the PVL technique does not invc}lve the addi-

tional cost of calculating the mclments of the
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Figure 3: The low-pass filter circuit.

Frequency, GHz

Figure 4: The output frequency response of

the low-pass filter circuit.

transmission lines.

The second example considers a low-pass

filter implemented with transmission lines as

shown in Fig. 3. The filter has a cut-off fre-

quency of 4 GHz. All transmission-line sec-

tions are assumed lossless and are of length

~/8 at the cut-off frequency. Their per-unit-

Iength parameters are: LI = L5 = 2.1633

nH/cm, Cl = C~ = 0.5136 pF/cm; L2 =

L4 = 7.25 nH/cm, Cz = Cq = 0.15326 pF/cm;

LB = 2.3433 nH/cm, C3 = 0.47416 pF/cm.

This filter was successfully analyzed in [5] us-

ing multipoint Pad4 approximation with ex-

pansion points at O, 12.5, 25, 37.5, and 50

GHz. The response obtained after 70 PVL it-

erations is compared with the exact response

in Fig. 4. The agreement over the O GHz -50

GHz band is excellent.

CONCLUSIONS

We have introduced a mathematical model

that allows circuits with multiple lossy multi-

conductor transmission lines to be simulated

efficiently and accurately by the PVL algo-

rithm. The mathematical model is based

on the use of Chebyshev expansions for the

representation of the spatial variation of the

transmission-line voltages and currents.
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