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ABSTRACT

We introduce a mathematical model for
lossy, multiconductor transmission lines that
makes possible the use of the Padé approx-
imation via the Lanczos (PVL) process to
the analysis of complex linear networks that
contain multiple transmission line systems.
Results from numerical experiments are pre-
sented to demonstrate the validity and discuss
the efficiency of the proposed model.

INTRODUCTION

With the rapid growth in size, density and
complexity of modern integrated circuits, the
use of classical circuit simulators becomes in-
efficient or even impossible. The alternative
to such simulators is the development of ap-
proximate reduced order models which cap-
ture, with acceptable engineering accuracy,
the important attributes of the response of
the circuit over the bandwidth of interest to
the specific analysis or design. For this pur-
pose moment-matching techniques [1] have
been applied to a variety of electrical CAD
problems. Despite their spectacular success,
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moment-matching techniques are hindered by
some numerical limitations [2][3].

Recently, a new method was introduced
for the computation of the Padé approxima-
tion of a lumped linear RLC circuit via the
Lanczos process [3]. This algorithm, which
is called PVL (Padé via Lanczos), produces
more accurate and higher-order approxima-
tions compared to asymptotic waveform eval-
uation (AWE) and its derivatives. Despite
its superior performance to moment-matching
techniques, applications of PVL have so far
been limited to lumped RLC circuits. The ob-
jective of this paper is to present a method for
modeling circuits with lossy multiconductor
transmission lines using the PVL algorithm.

TRANSMISSION LINES

The general approach to include the multicon-
ductor transmission line systems into a circuit
simulator is to treat them as linear multiports
described by a suitable relationship between
terminal voltages and currents which is ob-
tained rigorously from the Telegrapher’s equa-
tions. For instance, the following formula-
tion in Laplace domain is generally employed
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to integrate transmission lines into moment-
matching type simulations

A(s)Vi(s) + B(s)L(s) =0 (1)

where Vy(s) and I;(s) are column vectors
containing, respectively, the terminal voltages
and currents of the multiconductor line sys-
tem. The matrices A(s) and B(s) are de-
scribed in terms of the per-unit-length line
parameters and are usually exponential type
functions of s.

However, in order to be able to use the
PVL technique to analyze circuits containing
transmission lines, the elements of the matri-
ces A(s) and B(s) in (3) need to be first-
degree polynomials in s. For this purpose,
we introduce a new mathematical model for
lossy multiconductor transmission lines. The
mathematical model is based on the use of
Chebyshev polynomial expansions for the ap-
proximation of the spatial variation of the
transmission-line voltages and currents. The
choice of Chebyshev polynomials is motivated
by the exponential rate of convergence of
Chebyshev expansions [4]. This suggests that
highly accurate approximations of the voltage
and current distributions along the lines can

be effected with a small number of polynomi-
als (M). The choice of M will be discussed
later.

In brief, the method used the development
First, the
transmission-line voltages and currents are re-

of the new model is as follows:

placed by their Chebyshev expansions in the
Telegrapher’s equations. Then a simple col-
location procedure is used to obtain a matrix
representation of the transmission line equa-
tions with matrix coefficients that are first-
degree polynomials in s, and in which terminal
transmission-line voltages and currents appear
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explicitly

{t(s)
i(s)
V(s)

(AR + sAT)V,(s) + (BE + sBY)

In (2) AR, A, B, and B! are functions of
line parameters, and V and I, respectively,
contain the voltages and currents at the collo-
cation points except the near and far ends.

We enter (2) as a stamp into the overall
circuit matrix. Therefore, it is important to
keep the order of Chebyshev approximation as
small as possible in order not to increase the
size of the overall circuit matrix very much.
The accuracy of the approximation, on the
other hand, depends on the order of approx-
imation. Using the exponential convergence
rate property of the Chebyshev expansions, an
optimum value for M, the number of colloca-
tion points, for a transmission line of length [
can be chosen as,

M=4 + 2, (3)

where Ay, is the wavelength at the predeter-
mined maximum frequency.
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CIRCUIT FORMULATION

Consider a linear circuit N which contains
linear lumped components and multiconduc-
tor transmission line systems. The time-
domain modified nodal admittance (MNA)
matrix equations for the circuit /' with an
impulse excitation as input can be written as

dVA/(t)
dt

+Gy vN(t)+§Kj P ix(t) = byd(t)

k=1
(4)
where vr(t) is a vector of size Ny containing

Cy

the waveforms of the node voltages, voltage
source and inductor currents; by6(t) is a vec-
tor representing the excitations; Gy and Cyu



are constant matrices; Py, is a N X 2ny, selec-
tor matrix whose entries are 1 or 0, that maps
ix(t), the terminal currents of the kth line sys-
tem, into the node space of the circuit A'; K is
the number of transmission-line systems and
ny is the number of conductors in the kth line
system.

The transmission lines are described in the
frequency domain by (2). Combining the
formulations for all transmission lines with
the Laplace transform of (4), one obtains the
frequency-domain MNA matrix for the circuit

N

(G+sC)X=Db (5)

Let H(s) be the output of interest,

H(s) = dTX(s). (6)

Then, using (5), the output frequency re-
sponse is given by

H(s) = d7(G + )b (7)

The PVL algorithm, now, can be applied to
(7) to find the Padé approximation of the fre-
quency response via Lanczos process,

k;
Hy=>"

=1 S —p’l

(®)

where ¢ is the order of approximation, and
p; and k; are, respectively, the poles and the
corresponding residues. The PVL algorithm
can be found in [3].

EXAMPLES

The first example deals with the intercon-
nection circuit shown in Fig. 1. This exam-
ple has been widely used in the experimental
validation of moment-matching techniques [2].
We applied the PVL algorithm to this cir-
cuit and the 35th order PVL approximation
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Figure 1: The interconnect circuit.
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Figure 2: The output frequency response of
the interconnect circuit.

is compared with the exact response for V,:
in Fig. 2. The two responses are indistin-
guishable. The same circuit was also analyzed
using the multipoint moment-matching tech-
nique [5]. To find the response from dc to
5 GHz, four expansions were needed for the
moment matching case, which means that the
matrix had to be factored 4 times (1 real, 3
complex). On the other hand, using PVL the
same response is extracted from only one real
(but larger) matrix factorization. Moreover,
the PVL technique does not involve the addi-
tional cost of calculating the moments of the
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Figure 3: The low-pass filter circuit.
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Figure 4: The output frequency response of
the low-pass filter circuit.

transmission lines.

The second example considers a low-pass
filter implemented with transmission lines as
shown in Fig. 3. The filter has a cut-off fre-
quency of 4 GHz. All transmission-line sec-
tions are assumed lossless and are of length
A/8 at the cut-off frequency. Their per-unit-
length parameters are: Ly = Ls; = 2.1633
nH/cm, C; = Cs = 0.5136 pF/cm; Ly =
Ly =725nH/cm, Cy = C4 = 0.15326 pF/cm;
L; = 2.3433 nH/cm, C3 = 0.47416 pF/cm.
This filter was successfully analyzed in [5] us-
ing multipoint Padé approximation with ex-
pansion points at 0, 12.5, 25, 37.5, and 50
GHz. The response obtained after 70 PVL it-
erations is compared with the exact response
in Fig. 4. The agreement over the 0 GHz - 50
GHz band is excellent.
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CONCLUSIONS

We have introduced a mathematical model
that allows circuits with multiple lossy multi-
conductor transmission lines to be simulated
efficiently and accurately by the PVL algo-
rithm. The mathematical model is based
on the use of Chebyshev expansions for the
representation of the spatial variation of the
transmission-line voltages and currents.
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